Tehran - FNA
Iranian researchers from Semnan University in association with their colleagues from Malek Ashtar University succeeded in increasing the abrasive and hardness properties of nanocomposites as well as improving wettability of alumina nanoparticles in molten aluminum, its adhesion percentage in solid phase and nanoparticles distribution. To gain desired results, the researchers went through a milling process and produced a primary hybrid powder that contains alumina nanoparticles in addition to aluminum and copper. Selecting the best and the most available method for the mass production of metallic based nanocomposites is one of the most important challenges in the production of these composites. Casting method is an accepted method that is still being used by researchers although various similar production methods have been investigated. The most important challenge in this method is non-wettability of nanoparticles in the molten metals (such as aluminum and magnesium), which prevents the insertion of nanoparticles to the freezing metallic base. Mohammad Karbalayee Akbari, one of the researchers, elaborated on the procedure of the plan, and stated, “Vortex casting method was used to produce the composite. In the present study, alumina nanoparticles were firstly and individually milled with the powder of aluminum and copper metals. This way, we obtained a core-shell structure of metallic powders and ceramic nanoparticles. After the production of nanocomposite samples in forms of cylindrical bars and carrying out of thermal operation on the samples, various tests such as hardness, abrasion, and wear strength were carried out on the samples.” Akbari explained about the applications of the results obtained in this research, and said, “This composite product has direct applications in automobile manufacturing industries, aerospace industries, railing industries, ship-making (transportation industries), and military industries. These advanced materials can also be used in electronics, power transference and production, and many other industries in which modified light metals have structural applications.” Results of the research have been published in details in September 2013 in Composite Part B: Engineering, vol. 52, pp. 262-268.