Astronomers discovered a surprising new class of solitary stars moving fast enough to escape the gravitational grasp of the Milky Way galaxy. The discovery of this new set of "hypervelocity stars” was described at the annual meeting of the American Astronomical Society in Washington and is published in the Astrophysical Journal. "These new hypervelocity stars are very different from the ones that have been discovered previously," said Vanderbilt University graduate student Lauren Palladino, lead author on the study. "The original hypervelocity stars are large blue stars and appear to have originated from the galactic center. Our new stars are relatively small -- about the size of the sun -- and the surprising part is that none of them appear to come from the galactic core." The discovery came as Palladino, working under the supervision of Kelly Holley-Bockelmann, assistant professor of astronomy at Vanderbilt was mapping the Milky Way by calculating the orbits of Sun-like stars in the Sloan Digital Sky Survey, a massive census of the stars and galaxies in a region covering nearly one quarter of the sky. "It's very hard to kick a star out of the galaxy," said Holley-Bockelmann. "The most commonly accepted mechanism for doing so involves interacting with the supermassive black hole at the galactic core. That means when you trace the star back to its birthplace, it comes from the center of our galaxy. None of these hypervelocity stars come from the center, which implies that there is an unexpected new class of hypervelocity star, one with a different ejection mechanism." Astrophysicists calculate that a star must get a million-plus mile-per-hour kick relative to the motion of the galaxy to reach escape velocity. They also estimate that the Milky Way's central black hole has a mass equivalent to four million suns, large enough to produce a gravitational force strong enough to accelerate stars to hyper velocities. The typical scenario involves a binary pair of stars that get caught in the black hole's grip. As one of the stars spirals in toward the black hole, its companion is flung outward at a tremendous velocity. So far, 18 giant blue hypervelocity stars have been found that could have been produced by such a mechanism. Now Palladino and her colleagues have discovered an additional 20 sun-sized stars that they characterize as possible hypervelocity stars. "One caveat concerns the known errors in measuring stellar motions," she said. "To get the speed of a star, you have to measure the position really accurately over decades. If the position is measured badly a few times over that long time interval, it can seem to move a lot faster than it really does. We did several statistical tests to increase the accuracy of our estimates. So we think that, although some of our candidates may be flukes, the majority are real." The astronomers are following up with additional observations. The new rogues appear to have the same composition as normal disk stars, so the astronomers do not think that their birthplace was in the galaxy's central bulge, the halo that surrounds it, or in some other exotic place outside the galaxy. "The big question is: what boosted these stars up to such extreme velocities? We are working on that now," said Holley-Bockelmann.
GMT 09:14 2017 Wednesday ,18 October
Is facial recognition the stuff of sci-fi? Not in ChinaGMT 08:31 2017 Saturday ,23 September
Vision 2030 will take Saudi Arabia into the futureGMT 20:37 2017 Thursday ,07 September
NASA captures images of strong solar flaresGMT 20:39 2017 Wednesday ,30 August
United Technologies near deal to buy Rockwell Collins: reportGMT 13:41 2017 Saturday ,19 August
Eclipse-chasers trot the globe, addicted to Moon's shadowGMT 17:47 2017 Wednesday ,16 August
NASA: let's say something to Voyager 1 on 40th anniversary of launchGMT 16:41 2017 Friday ,11 August
Asteroid to shave past Earth on Oct 12: ESAGMT 21:32 2017 Tuesday ,18 July
Japanese engineers develop headset-less VR systemMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor