farewell greeting from a dying star
Last Updated : GMT 09:03:51
Almaghrib Today, almaghrib today
Almaghrib Today, almaghrib today
Last Updated : GMT 09:03:51
Almaghrib Today, almaghrib today

Farewell greeting from a dying star

Almaghrib Today, almaghrib today

Almaghrib Today, almaghrib today Farewell greeting from a dying star

Tehran - FNA

Mysterious bright radio flashes that appear for only a brief moment on the sky and do not repeat could be the final farewell greetings of a massive star collapsing into a black hole, astronomers from Nijmegen and Potsdam argue. Radio telescopes have picked up some bright radio flashes that appear for only a brief moment on the sky and do not repeat. Scientists have since wondered what causes these unusual radio signals. An article in this week's issue of Science suggests that the source of the flashes lies deep in the early cosmos, and that the short radio burst are extremely bright. However, the question of which cosmic event could produce such a bright radio emission in such a short time remained unanswered. The astrophysicists Heino Falcke from Radboud University Nijmegen and Luciano Rezzolla from the Max Planck Institute for Gravitational Physics in Potsdam provide a solution for the riddle. They propose that the radio bursts could be the final farewell greetings of a supramassive rotating neutron star collapsing into a black hole. Spinning star withstands collapse Neutron stars are the ultra-dense remains of a star that has undergone a supernova explosion. They are the size of a small city but have up to two times the mass of our Sun. However, there is an upper limit on how massive neutron stars can become. If they are formed above a critical mass of more than two solar masses, they are expected to collapse immediately into a black hole. Falcke & Rezzolla now suggest that some stars could postpone that final death through fast rotation for millions of years. Like a ballerina spinning around her own axis, centrifugal forces could stabilize these overweight neutron stars against collapse and leave them in a 'half-dead' state for up to a few million years. Nonetheless, the star is just buying time and even with this trick it cannot avoid the inevitable. Neutron stars have extremely strong magnetic fields threading their environment like huge propeller blades. Any left-over matter in the surrounding will be blown away by this magnetic fan and rotational energy is radiated away. Thus, while the half-dead star ages, it also slows down and becomes more and more compact, with gravity playing an ever stronger role. At some point the tired star can no longer withstand gravity's pull. It will cross the ultimate death-line and suddenly collapse to a black hole while transmitting a strong radio flash. Emission disappears in black hole Astrophysicists normally expect a gravitational collapse to be accompanied by bright fireworks of optical and gamma-ray radiation from the imploding matter. This characteristic emission, however, is not seen in the newly found fast radio bursts. Falcke & Rezzolla suggest that this is because the neutron star has already cleaned out its surroundings and the remaining stellar surface is quickly covered by the emerging event horizon. 'All the neutron star has left is its magnetic field, but black holes cannot sustain magnetic fields, so the collapsing star has to get rid of them,' explains Prof. Falcke. When the black hole forms, the magnetic fields will be cut off from the star and snap like rubber bands. As we show, this can indeed produce the observed giant radio flashes. All other signals you normally would expect -- gamma rays, x-rays -- simply disappear behind the event horizon of the black hole.' Because of its single, ultra-rapid and unrepeatable signal, Falcke and Rezzolla named these objects 'blitzars', from the German blitz (flash). This is opposed to pulsars, which are rotating neutron stars that are flashing repeatedly like cosmic lighthouses and simply fade away. Prof. Rezzolla adds: 'These fast radio bursts could be the first evidence of the birth of a black hole, whose formation is therefore accompanied by an intense, almost pure, radio-wave emission. Interestingly, a blitzar is at the same time the farewell signal of a dying neutron star and the first message of from a newly born black hole.' The new theory proposed by Falcke & Rezzolla provides a first solid interpretation of the previously mysterious radio bursts. Their work has been submitted to the journal 'Astronomy & Astrophysics' and was posted on the arxiv.org preprint archive. To further test their proposal, more observations of the so far elusive radio bursts are required. Falcke and his colleagues plan to use telescopes like the new LOFAR radio telescope to detect more of these dying stars in the future. This would allow them to locate the events quicker and more precisely, and to observe this new formation channel of black holes in the depths of the cosmos with keen 'radio eyes'.

almaghribtoday
almaghribtoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

farewell greeting from a dying star farewell greeting from a dying star

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

farewell greeting from a dying star farewell greeting from a dying star

 



Almaghrib Today, almaghrib today Skincare PR Performance Full Year 2017

GMT 09:22 2018 Monday ,22 January

Skincare PR Performance Full Year 2017
Almaghrib Today, almaghrib today New hunt for flight MH370 gets under way

GMT 11:03 2018 Wednesday ,24 January

New hunt for flight MH370 gets under way
Almaghrib Today, almaghrib today Modern colorful bedroom renovation

GMT 10:57 2017 Thursday ,21 December

Modern colorful bedroom renovation
Almaghrib Today, almaghrib today Puigdemont candidate for Catalan president

GMT 13:56 2018 Tuesday ,23 January

Puigdemont candidate for Catalan president
Almaghrib Today, almaghrib today Turkey detains dozens more

GMT 10:47 2018 Wednesday ,24 January

Turkey detains dozens more

GMT 22:57 2015 Monday ,23 February

Bahraini Shura chairman presented book

GMT 14:59 2014 Thursday ,10 July

Small studio apartment in Manhattan

GMT 07:55 2017 Saturday ,08 April

Sherine Reda happy for “Hell’s Stone” success

GMT 08:58 2012 Sunday ,30 December

11 children killed in Syria bombardments

GMT 19:08 2012 Wednesday ,10 October

Lienen named AEK coach

GMT 03:22 2012 Monday ,20 February

Tourism gets priority in Oman development

GMT 20:21 2016 Sunday ,17 January

President of Mexico leaves Riyadh after 2-day visit

GMT 22:01 2012 Tuesday ,20 November

Schneider\'s wife gives birth to daughter

GMT 06:20 2012 Monday ,25 June

Qatar to bid for 2024 Summer Olympic Games

GMT 07:55 2017 Wednesday ,29 March

BDF Chief patronises 3rd mass wedding

GMT 20:08 2014 Tuesday ,21 October

Egypt denies military involvement in Libya

GMT 06:41 2013 Saturday ,03 August

Blast near Indian consulate in Afghanistan
Almaghrib Today, almaghrib today
 
 Almaghrib Today Facebook,almaghrib today facebook  Almaghrib Today Twitter,almaghrib today twitter Almaghrib Today Rss,almaghrib today rss  Almaghrib Today Youtube,almaghrib today youtube  Almaghrib Today Youtube,almaghrib today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

.almaghribtoday .almaghribtoday .almaghribtoday .almaghribtoday
almaghribtoday almaghribtoday almaghribtoday
almaghribtoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
almaghribtoday, Almaghribtoday, Almaghribtoday