Scientists discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep disturbances to other behavioral, cognitive, and metabolic abnormalities.
An international team of scientists has discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep disturbances to other behavioral, cognitive, and metabolic abnormalities, commonly associated with jet lag, shift work and exposure to light at night, as well as with neuropsychiatric conditions such as depression and autism.
In a study published online April 27 in Nature Neuroscience, the authors, led by researchers at McGill and Concordia universities in Montreal, report that the body's clock is reset when a phosphate combines with a key protein in the brain. This process, known as phosphorylation, is triggered by light. In effect, light stimulates the synthesis of specific proteins called Period proteins that play a pivotal role in clock resetting, thereby synchronizing the clock's rhythm with daily environmental cycles.
Shedding light on circadian rhythms
"This study is the first to reveal a mechanism that explains how light regulates protein synthesis in the brain, and how this affects the function of the circadian clock," says senior author Nahum Sonenberg, a professor in McGill's Department of Biochemistry.
In order to study the brain clock's mechanism, the researchers mutated the protein known as eIF4E in the brain of a lab mouse so that it could not be phosphorylated. Since all mammals have similar brain clocks, experiments with the mice give an idea of what would happen if the function of this protein were blocked in humans.
Running against the clock
The mice were housed in cages equipped with running wheels. By recording and analyzing the animals' running activity, the scientists were able to study the rhythms of the circadian clock in the mutant mice.
The upshot: the clock of mutant mice responded less efficiently than normal mice to the resetting effect of light. The mutants were unable to synchronize their body clocks to a series of challenging light/dark cycles -- for example, 10.5 hours of light followed by 10.5 hours of dark, instead of the 12-hour cycles to which laboratory mice are usually exposed.
"While we can't predict a timeline for these findings to be translated into clinical use, our study opens a new window to manipulate the functions of the circadian clock," says Ruifeng Cao, a postdoctoral fellow in Dr. Sonenberg's research group and lead author of the study.
For co-author Shimon Amir, professor in Concordia's Department of Psychology, the research could open a path to target the problem at its very source. "Disruption of the circadian rhythm is sometimes unavoidable but it can lead to serious consequences. This research is really about the importance of the circadian rhythm to our general well-being. We've taken an important step towards being able to reset our internal clocks -- and improve the health of thousands as a result."
GMT 18:16 2017 Thursday ,26 October
Artist duo to wed 24 times to highlight gay marriageGMT 19:02 2017 Wednesday ,25 October
Erdogan opponent launches new political party in TurkeyGMT 17:18 2017 Thursday ,19 October
May seeks summit breakthrough with offer on EU citizensGMT 14:31 2017 Saturday ,07 October
French 'Mama Jihad' jailed for spurring on son in SyriaGMT 13:25 2017 Wednesday ,04 October
Thousands of Poles rally to defend women's rightsGMT 09:18 2017 Thursday ,28 September
Thai junta chief says fugitive ex-PM Yingluck in DubaiGMT 09:34 2017 Wednesday ,27 September
Japan's Koike: Media-savvy operator with stomach for a fightGMT 12:58 2017 Saturday ,16 September
Lady Gaga hospitalized, pulls out of Brazil's Rock in RioMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor